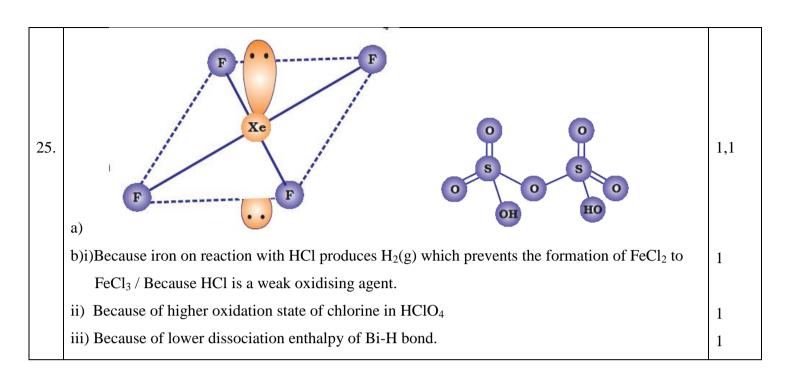
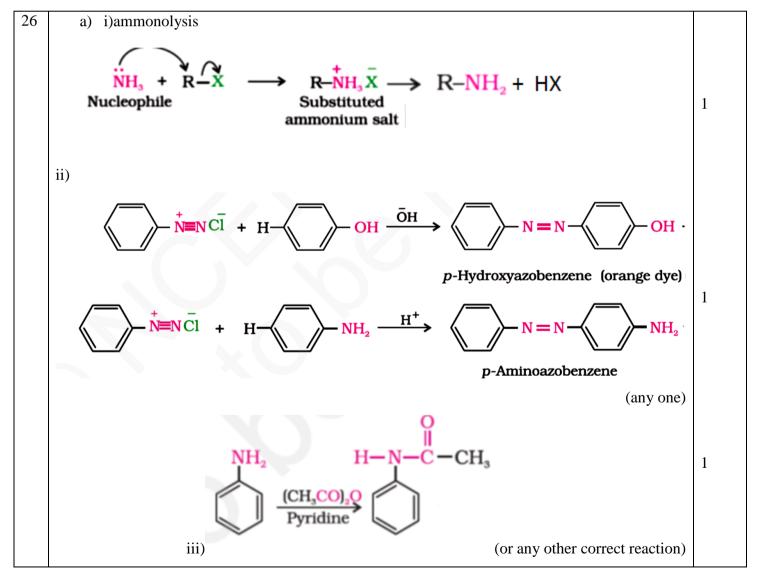
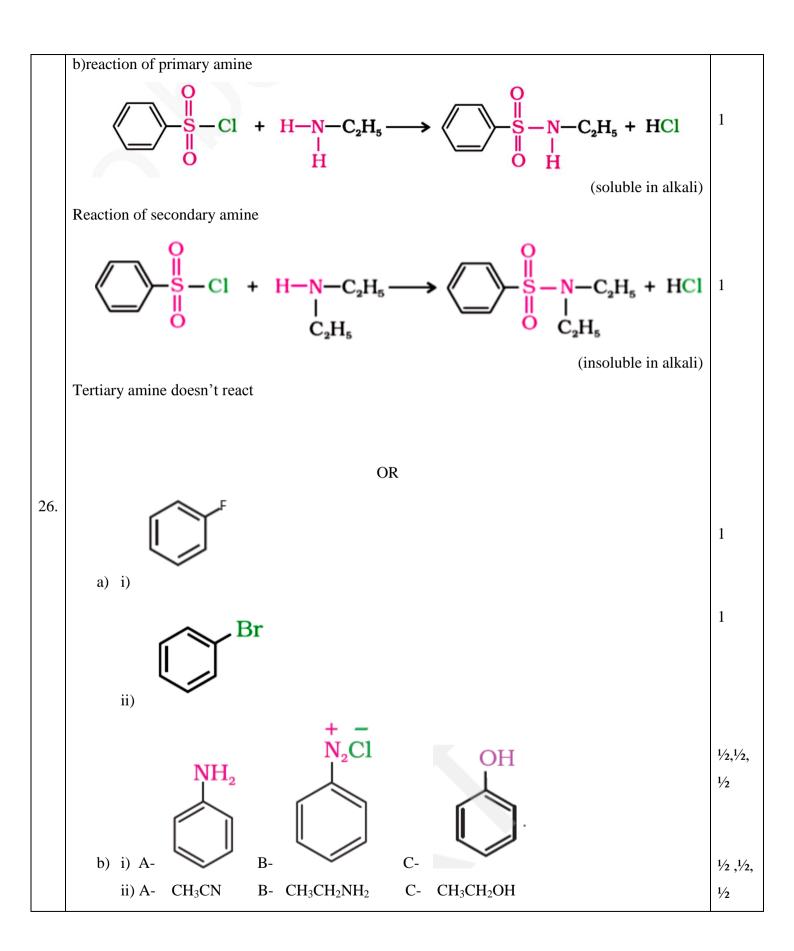
CHEMISTRY MARKING SCHEME 2015 <u>SET -56/2/1 F</u>


Qn	Value points	Marks
1	CH ₃ CH ₂ I, because I is a better leaving group.	1/2 , 1/2
2	Rhombic sulphur	1
3	3-Methylbut-2-en-1-ol	1
4	X_2Y_3	1
5	Because of weak van der Waals' forces in physisorption whereas there are strong chemical forces in chemisorption.	1
6.	i) tris-(ethane-1,2-diamine)chromium(III) chloride	1
	ii) K ₃ [Cr(C ₂ O ₄) ₃]	1
7.	When solute- solvent interaction is stronger than pure solvent or solute interaction.	1
	Eg: chloroform and acetone (or any other correct eg)	1/2
	ΔmixH= negative	1/2
	OR	
7.	Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at	1
	constant temperature / is a liquid mixture which distills at constant temperature without	
	undergoing change in composition	1/2
	Maximum boiling azeotropes	1/2
	eg: HNO_3 (68%) and $H_2O(32\%)$ (or any other correct example)	
8.	(i) CH ₃ MgBr/H ₃ O ⁺	1
	(ii) PCl ₅ / PCl ₃ / SOCl ₂	1
9.	a) Cu^{2+} (aq) + 2 e \longrightarrow $Cu(s)$ because of high E^0 value/ more negative ΔG	1/2 , 1/2
	b) It states that limiting molar conductivity of an electrolyte is equal to the sum of the individual	1
	contributions of cations and anions of the electrolyte.	
	It is used to calculate the Λm^0 for weak electrolyte / It is used to calculate α and Kc	
	(Any one application)	1


10	a) Due to presence of unpaired d-electrons/ comparable energies of 3d and 4s orbitals.b) Mn, due to involvement of 4s and 3d electrons/ presence of maximum unpaired d-electrons.	1 1/2 ,1/2			
11	$\Delta T_f = i. K_f m$				
	$= i K_f w_B \times 1000$	1			
	$\overline{\mathrm{M_{B}x}\mathrm{w_{A}}}$				
	$2K = 2 \times 1.86K \text{ kg/mol } \times \text{ w}_{B} \times 1000$	1			
	58.5 g/mol x 37.2 g				
	$\mathbf{w}_{\mathrm{B}} = 1.17\mathrm{g}$	1			
12	n HOH ₂ C - CH ₂ OH + n HOOC—COOH				
	Ethylene glycol Terephthalic acid (Ethane-1, 2 - diol) (Benzene-1,4 - di carboxylic acid)	1			
	OH +CH ₂ O	1			
	Phenol and formaldehyde $CH_2 = CH - CH = CH_2 \qquad C_6H_5CH = CH_2$	1			
	1, 3-Butadiene Styrene				
	(Note: half mark for structure/s and half mark for name/s)				
13	i) Fructose	1			
	ii) Acidic amino acid has more number of acidic carboxylic group than basic amino	1			
	group whereas basic amino acid has more number of basic amino group. iii) Vitamin C	1			
14	a) Impure Ni reacts with CO to form volatile Ni(CO) ₄ which when heated at higher	1			
	temperature decomposes to give pure Ni.				
	b) NaCN acts as a leaching agent to form a soluble complex with gold.	1			
	c) It is a mixture of Cu ₂ S and FeS	1			
	.,	_			


15	E cell = E^0 cell $-\frac{0.059}{n}V$ log $\frac{[Zn^{2+}]}{[H^+]^2}$	1
	E cell = $0.76 \text{ V} - \frac{0.059}{2} \text{ V log} = \frac{10^{-3}}{(10^{-2})2}$	1
	E cell = 0.76 - 0.0295 V log 10	
	= 0.7305 V	1
16	i) Due to coagulation of colloidal clay particles.	1
	ii) Because NH_3 is easily liquefiable than N_2 due to its larger molecular size.	1
	iii) Because of more surface area.	
		1
17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	cis- isomer trans-isomer	
	t_{2g}^4	1
	iii) dsp ² , diamagnetic	1/2, 1/2
18	a) Because they are unable to form H-bonds with water molecules.	1
	b) Because of the presence of chiral carbon in butan-2-ol.	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
19	c) Due to dominating +R effect i) C ₆ H ₅ COOH <u>PCl₅</u> C ₆ H ₅ COCl H ₂ /Pd C ₆ H ₅ CHO	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	·	1
	ii) $CH = CH + H_2O $ Hg^{2+}/H_2SO_4 CH_3CHO	1
	iii) $CH_3COOH \xrightarrow{NaOH} CH_3COONa \xrightarrow{NaOH + CaO, heat} CH_4$	1
	OR	
19.	$RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3O} RCHO$	1
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$ ii)	1
	$ \begin{array}{c} \text{CH}_3 \\ + \text{CrO}_2\text{Cl}_2 \xrightarrow{\text{CS}_2} \end{array} \begin{array}{c} \text{CH(OCrOHCl}_2)_2 \\ \xrightarrow{\text{H}_3\text{O}^+} \end{array} \begin{array}{c} \text{CHO} \end{array} $	1

20	;)	Decays avvgan stabilizes Mn more than E due to multiple handing	1
20	i)	Because oxygen stabilizes Mn more than F due to multiple bonding	1
	ii)	Because of their ability to show variable oxidation state(or any other correct reason)	1
	iii)	$3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
21	i)	CH ₃ CH ₂ CH ₂ OH	1
		Br OH Br	1
	ii)	Br	
	iii)	CH ₃ CHO	1
22	$d = \frac{Z \times M}{N_a \times a^3}$		1/2
		$n^{-3} = \frac{z \times 60 \text{ g/mol}}{6.022 \times 10^{23} \text{ mol}^{-1} \times (4 \times 10 - 8 \text{ cm})^3}$	
	0.23 g cm	$6.022x10^{23} mol^{-1} x (4 x 10 - 8cm)^3$	1/2
	z=4		
			1
	fcc		1
23		oncern for students health, Application of knowledge of chemistry to daily life, empathy caring or any other	1/2 , 1/2
		hrough posters, nukkad natak in community, social media, play in assembly (or any other	1
	re	levant answer)	1
	c) W	rong choice and overdose may be harmful	1
	d) A	spartame, saccharin (or any other correct example)	1/2+ 1/2
24	a)i) Activ	ration energy- Extra energy required by reactants to form activated complex.	1
	ii) Rate	constant- rate of reaction when the concentration of reactant is unity.	1
	1 - \		
	b)		
	$k = \frac{2.302}{t}$	$\frac{3 \log \left[A_0 \right]}{[A]}$	1/2
	k = 2.3	303 log 100 0 min 75	1/2
	k = <u>2.3</u>	3 <u>03 x 0.125</u> 10 min	
			ı

	$k = 0.02879 \text{ min}^{-1}$	1
	$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.02879 min^{-1}}$	
	$t_{1/2} = 24.07 min$	1
	OD	
24.	OR a) i)First order ii) -k iii) s ⁻¹	
	b)	1,1,1
		1,1,1
	$t = \frac{2.303}{k} \log \frac{[R]0}{[R]}$	
	$t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$	1/2
	$t = \frac{2.303}{k} \times 2$	
	$t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$	
		1/2
	$=\frac{2.303}{\mathrm{k}}$	
	$t_{99\%} = 2 \times t_{90\%}$	1
25	a) i)Because of lone pair in NH ₃ , lone pair-bond pair repulsion decreases the bond angle	1
	ii)Because of absence of H-bonding in H ₂ S	1
	iii)Because stability of +4 oxidation state increases from SO ₂ to TeO ₂	1
	HO OH OH	1,1
	b) H ₄ P ₂ O ₇	
	OR	

_		_		
I Cr	Name	Cr	 Name	
3F.		31.		

No.	P	No.	